NRF24L01+ と DS18B20+と Arduinoでリモート温度計 1

NRF24L01+を使って無線実験が成功したので、実用的な用途に応用です。本当は家の中の消費電力を計測したいのですが、他の方の製作記事を拝見すると結構大変そうです。今の私には少々荷が重すぎるようですね。なので、すかさず方針変更です。手始めに気温を測る温度計に挑戦です。これなら何とかいけそうです。

でも、一旦冷静になって考えると”気温を測ってどうするの?”という素朴な疑問がわいてきました。「実用的な用途」と言えるかどうかも論議が必要です….結局、結論がなかなか出てきそうにないので、先に進むために今そのことは考えないことにします。

温度を測るセンサーもいろいろあって迷いますが、秋月電子の広告を見て「1wireデジタル温度センサー」という文字が目にとまりました。値段も1つ300円とお手頃です。

Maximの1wireデジタル温度センサー DS18B20+
=特長=
・1wireインターフェースのシンプルなデジタル温度センサー
・すべてのデバイスに対してユニークな64ビットのシリアルコードを付与(内部ROMに書込済)
・データ線から電源を供給可能
・電源電圧:3.0~5.5V
・測定温度範囲:-55℃~+125℃
・精度:±0.5℃(-10℃~;85℃)
・ドリフト:±0.2℃

・・・

他の温度センサーと比べて精度が良いみたいですね。ネットで検索するとO-Famiry 電子工作の部屋さんのWeb中にDS18B20+の説明が書かれていました。またマニュアルの日本語訳もされています。すごいですね、頭がさがります。ありがとうございます。調べて行くとArduinoとの相性も良さそうな事がわかりました。これに決めます。

ArduinoでDS18B20+を使うためにPJRCさんのサイトから
OneWire Library:Download: OneWire.zip (Version 2.1)
このライブラリをダウンロードします。

zipファイルを解凍してできる「OneWire」フォルダをフォルダごとAduino1.0の「libraries」ディレクトリにコピーすると使えるようになります。

まずArduino単体で温度が読み取れるか試してみましょう。ブレッドボードにDS18B20+を配線します。このOnWireデバイスは、一つ一つのデバイスに64ビットのアドレスが割り振られているとのことです。ワンワイヤーと言っても現実には通信に2本の線が必要(パラサイトモード時)なのですが、カスケードにして複数つなぐことができるそうです。トランジスタ風のパッケージの中に、機能がぎっしり詰まっていますね。感心してしまいます。

今回私は、DS18B20+の2番ピン(DQ)はArduinoのデジタル6番ピンにつなぎました。ブレッドボードに配線をすませて、ライブラリ付属のサンプルスケッチ「DS18x20_Temperature」を実行します。

スケッチ中の
OneWire ds(10); // on pin 10
この行は、自分の環境に合わせ、6に変更しておきました。これでシリアルモニターに現在の気温が表示されるはずです。

スケッチを走らせると瞬時に気温が計測され、表示されます。センサーを指で触ると体温に反応して表示される温度が刻々と変化します。応答性能もよさそうです。

ちなみに配線を間違えると85℃の表示がされ、そこから微動だにしません。(なぜこのことを知っているかは秘密です)資料を見ると85℃はパワーオンリセット時にセットされるデフォルト値みたいです。配線には気をつけましょう。壊れなくて良かったです。

先ほどのPJRCさんのwebに、このスケッチには氷点下以下が測れないというBugがあると書かれていましたので、このスケッチを修正してみました。とりあえず接続するDS18B20+は1つなので、アドレス指定の部分は削除してしまいました。
[C]
#include
// OneWire DS18B20 Temperature Reading
// only slightly modified DS18x20_Temperature sketch
// from OneWire library examples bundle.
// http://www.pjrc.com/teensy/td_libs_OneWire.html
//

OneWire ds(6); // on digital pin 6 DS18B20+ (DQ)
const short Resolution = 12; //DS18B20 Resolution 9 – 12 Bit

void setup(void) {
Serial.begin(9600);

// Thermometer Resolution set (default 12 BITS)

short Sw_value ;
switch (Resolution){
case 9:
Sw_value = 0x1F;
break;
case 10:
Sw_value = 0x3F;
break;
case 11:
Sw_value = 0x5F;
break;
default:
Sw_value = 0x7F;
break;
}
ds.reset();
ds.skip();
ds.write(0x4E); // Write Scratchpad
ds.write(0x00); // User Byte 1 (not in use)
ds.write(0x00); // User Byte 2 (not in use)
ds.write(Sw_value); // set Thermometer Resolution

}

void loop(void) {
byte i;
byte data[12];
float celsius;

ds.reset();
ds.skip();
ds.write(0x44,1); // start conversion, with parasite power on at the end

int Conv_time = 1000;
switch (Resolution ){
case 9 :
Conv_time = 100;
break;;
case 10 :
Conv_time = 200;
break;
case 11 :
Conv_time = 400;
break;
}
delay(Conv_time); // Resolution to 9 BITS conversion time 93.75ms
// 200 : Resolution to 10 BITS conversion time 187.5 ms
// 400 : Resolution to 11 BITS conversion time 375 ms
// 1000 : Resolution to 12 BITS conversion time 750 ms
// we might do a ds.depower() here, but the reset will take care of it.

ds.reset();
ds.skip();
ds.write(0xBE); // Read Scratchpad

for ( i = 0; i < 9; i++) { // we need 9 bytes data[i] = ds.read(); } if (OneWire::crc8(data,8) != data[8]) { Serial.println("CRC is not valid!"); return; } // convert the data to actual temperature int raw = (data[1] <<8) | data[0]; switch ( Resolution){ case 9: raw = raw & 0xFFF8; // 9 bit resolution break; case 10: raw = raw & 0xFFFC; // 10 bit resolution break; case 11: raw = raw & 0xFFFE; // 11 bit resolution break; } celsius = (float)raw / 16.0 ; Serial.print(" Temperature = "); Serial.print(celsius); Serial.println(" C "); } [/C] ちゃんと動くか否か心配なのでテストをすることにしました。昨日まで冷え込んでいたので夜明け前なら外気温は氷点下なると見込んで測ってみました。が、残念ながらあとわずかの所で氷点下になりません。2~3日繰り返しましたが徒労に終わりました。このまま待っていると来冬になってしまいそうなので、DS18B20+を簡単なプローブにして氷と塩を使い測ってみました。まるで理科の実験です。小学校3年生以来ですね。 解像度( Resolution)は9,10,11,12ビットのいずれかで設定することができ、それぞれ0.5℃,0.25℃,0.125℃,0.0625℃単位で測ることができます。設定をしないと12ビットになります。解像度が大きくなるほど温度をデジタルデータに変換する時間がかかりますので、電池駆動で消費電力を少なくしたい時は解像度を低く抑えた方が良いかもしれません。